Tuesday, March 19, 2013

How I Create Liquid Soaps and Shampoos - A Tutorial

I recently ventured into the world of making liquid soaps and shampoos from scratch.  I have been making cold process handcrafted soaps for several years now and was ready to venture into the world of liquid soapmaking.  I make several versions of cold process shampoo bars, but many of my customers prefer shampoo in liquid form.  Liquid soaps can also be preferable for guest bathrooms where bar soap can be a bit messy.  They are also wonderful in foamer bottles.

There are very few books and resources available to those looking to learn the process of liquid soapmaking and it takes lots of patience, practice and note taking to make it successfully and consistently.  I am not going to get into the various base oils and their properties and what they can bring to your soap recipe as there is a ton of information available regarding that.  My goal here is to show and explain how I make liquid soap and shampoo and hopefully help someone else struggling with the process.

Liquid soap is a bit more challenging than cold process soap, so if you have never made handcrafted soap of any kind (not including melt and pour), you may want to start with a simple 3-oil cold process soap first.  This will give you an idea of what trace is, what the initial saponification process is what can and cannot go wrong.

So let's get started.  I am not posting a specific recipe here since the point is the process.  The recipe I am using for this is a shampoo so is high in hard oils (Coconut, Babassu) and low in soft oils (olive oil, castor oil, almond oil) so it will trace a bit quicker.  The more soft oils in a recipe, the longer the process takes to get to trace to start the cooking.  100% soft oil formulations will take the longest to come trace and to get to the cooking stage.

Please remember, there are many soap formulations and processes out there, but this is how I make my liquid soap and shampoo.

Equipment:
Crock Pot - I use a 4.5 quart crock pot with 4 settings - Warm, Low and High
Strong Solid Stirring Utensil
Stick Blender
Large Pyrex Measuring Cup
Container for measuring Potassium Hydroxide
Thermometer
Digital PH Meter
Phenolphthalein

Ingredients for Paste:
Base Oils (Coconut, Olive, Babassu, Almond, Castor, etc.)
Distilled Water
Potassium Hydroxide KOH

Ingredients for Dilution and finishing:
Distilled Water
Glycerin (Optional)
Citric Acid (Optional)
Fragrance or Essential Oil (Optional)
Other additives
4/4/13 ETA: Hydroxyethyl Cellulose - HEC (for thickening)
Containers for bottling

Please use all safety precautions including wearing eye and hand protection.  My 4.5 quart crock pot does a great job on formulations with 20 - 30 ounces of oils.  Any more than that, and the mixture gets too close to the top of the pot.

Step 1:  Calculate your water and potassium hydroxide amounts.  I use Brambleberry's Lye Calculator for liquid soap with a 0%- 2%  superfat.  If find their calculator works well for my basic formulations.  Be careful with your superfat numbers as excess fats that cannot be saponified may cloud your soap.  In the past, soapmakers used to formulate with a lye excess that was later neutralized to insure a clear soap.  That is no longer common practice.  Once you get a handle on liquid soapmaking you can also play with making 2 lye soaps combining both potassium and sodium hydroxides.  By using two lyes, you can get a soap with more "body" and in some formulations you will get a thicker diluted soap.  I have made liquid soaps with 10/90 up to 40/60 ratios of sodium/potassium hydroxides. You can use the summerbeemeadow calculator to determine lye amounts for 2 lye soaps.  Note that both summerbeemeadow and brambleberry calculators take into account the 90% purity of KOH.

A few great beginner recipe:

10 ounces olive oil
4 ounces coconut oil (76 degree)
2 ounces castor oil

3.5 ounces Potassium Hydroxide (0% superfat)
10.5 ounces distilled water


Step 2:  Measure out your oils into the crock pot and melt them on high.  Bring oils to a temperature of about 160 degrees F.

Step 3:  Measure out the distilled water into the pyrex measuring cup and potassium hydroxide KOH into another container.  Slowly add the potassium hydroxide to the distilled water while mixing with a whisk until it is all dissolved.  This mixture will heat up rapidly so go slow, adding small amounts at a time.  Never add the water to the lye.  As you know,  lye is very caustic and you do not want to get it on yourself or breath it in.

Step 4:  When oils have reached a temp of about 160 degrees F and water/lye about 140 degrees F (these are not set in stone, just what I strive for.  I have made liquid soap with either of these being +/- 10 degrees), slowly add the lye mixture to the melted oils in crock pot using the stick blender to blend.

Step 5:  Continue blending until the mixture starts to thicken up.  Formulas high in hard oils (coconut, babassu) will reach thicken up quicker than those higher in soft oils.  The blending will product bubbles on the surface.  The bubbles start out tiny, but will increase in size as you mix and the mixture starts to thicken.  It is a sign I look for that indicates the thickening is taking place.



Step 6:  Continue blending with the stick blender or by hand (sometimes the motor of the stick blenders need to rest or they can overheat and you can switch back and forth between hand mixing and stick blending - but keep the mixture moving).  The mixture will start to hold its shape like pudding (and wiggle a bit too).  The bubbles tend to start getting larger as they try to get to the surface which is a sign that the mixture is thickening.  The mixture will also get lighter in color.  Once the mixture can hold its shape like thick pudding, you have achieved trace.  Some formulations move so fast once they start to thicken that you could miss this - not a big deal.



Step 7:  Before you know it the mixture will immediately get so thick that the stick blender will not function in it.  Remove the stick blender and mix with the mixing utensil - a large spoon or sturdy spatula.  You want this to be sturdy as this mixture will be very difficult to stir and you don't want to snap the utensil.  I personally remove the stick blender and mix by hand when the soap shows signs of thickening (thick pudding).  This phase can happen so fast that I have actually broken the blade on my stick blender trying to get the soap paste off of it.

Formulas with a high amount of soft oils (especially 100% olive oil) may never get to this stage and you will find it difficult to keep the lye mixture and oils blended.  If you stop mixing, you will notice them try to separate with little pockets of oil on top, but just keep mixing and soon, it will all stay blended together.


Step 8:  As you continue mixing and turning the mixture, it will continue to thicken until it is very stiff and difficult to mix.   This is often referred to as the "Taffy" stage as the mixture resembles taffy.  Again, 100% olive may not get to this stage.


Step 9: Once you get to this stage it is time to cook the paste.  I keep my crock pot on high and the paste cooks at a temp of between 170 - 200 degrees F.  Cover, the crock pot and set the timer for 5 - 10 minutes.  We need to check that all the lye mixture has been fully incorporated into the oils.  After this time, check the mixture for liquid at the bottom of the pot.  If there is watery liquid (not the condensation that drips back in from the lid), then mix it again and repeat the 5 - 10 minute cycle until no liquid is at the bottom of the pot.  The picture below shows no liquid at the bottom and is good to go.  Getting to this point can take anywhere from 20 minutes to hours depending on your formulation.



Step 10:  Put the lid on the crock pot and write down the time.  This is when you start your cook.  You will be checking and turning your mixture every 30 minutes until it has cooked for 3 hours.  Your mixture or paste will slowly become more translucent during this initial 3 hours.  You should start seeing spots of translucent paste after the 1st hour.  Turn and mix the paste at these 30 minute intervals.  The paste may be very stiff and you will have to break it up a bit to keep it mixed.  After 3 hours it should be very translucent and the color will become darker.  The color will depend on the oils used.  The lighter the oils (coconut) the lighter the paste, the darker the oils (Extra Virgin Olive Oil or some infused Oils) will create a darker paste.

After 30 minutes

After 1 Hour


After 1 1/2 - 2 hours (Continuing to get more translucent)


















After 3 Hours (Paste is very translucent and golden)

Step 11:  At this point you can test the paste for clarity but diluting a small bit in some distilled water. This is also when I will test will the Phenolphthalein.  This is the only way to know for sure that all the lye has been used up.  Your soap can test clear, but the paste can still turn pink indicating excess lye and a high Ph.   To test for clarity, boil about 3 ounces of distilled water and add a dollop of soap paste and mix it up breaking up the paste.  Once the paste has diluted, you can check the clarity.  If your soap is milky or very cloudy/hazy, keep cooking it and recheck every 30 minutes - 1 hour.  Some oils and butters will not create a clear liquid soap because of unsaponifiables or if you superfat your formula too much.  These can include shea butter, avocado oil and jojoba oil.  Used in small amounts, you should still get a clear soap, but too heavy in these oils, butters and the unsaponified fats will cloud the soap or fall to the bottom.  If you superfat too much, you may also have difficulty getting a clear soap.




My diluted sample at this point will typically test 9.7 - 10.2 on a digital Ph meter at room temperature.  If you don't have a digital Ph meter, I would highly recommend one that is easy to calibrate.  You can get a good one for about $55 or so.  This is the one I use: Oakton Digital PH Meter.  I paid about $65 for it AND the calibration solution on Amazon.  It is important to easily calibrate a digital Ph meter and I do so prior to each batch of liquid soap I make.

At this point, many will be done and will neutralize the excess lye with a solution of citric acid, boric acid or borax.  I prefer to continue cooking the paste until my paste no longer turns pink from the phenolphthalein drops.   I like my soaps to have a ph of around 9.0 - 9.5 and even a tad bit lower for shampoos.  My pastes will typically cook from 6 - 10 hours to achieve this. 


To test with the Phenolphthalein drops, dab a very small amount of paste onto a white paper towel and place a drop or two of the Phenolphthalein solution onto the paste.  After several minutes it will either stay clear or turn a shade of pink from dark to very, very pale.  The darker the pink, the more lye is present in the soap paste.  As it gets closer to testing clear with the Phenolphthalein drops, the paste softens up to the consistency of chunky vaseline.  Once the texture of the paste is very soft and smooth, the Phenolphthalein will usually test clear or just have very faint ring of light pink around the edges.  Test a paste sample after every hour of cooking.  



Step 12: Once the cooked soap paste tested with the Phenolphthalein drops is clear, I consider it done.  Crock pot is turned off and I let let paste sit overnight.  Below is the finished soap paste.  At this point it is usually a very, very soft consistency.
 



Step 13:  Diluting the paste - this will require quite a bit of patience if working with a new formulation.  If you are recreating a previously tested formula, you should have all the notes for the proper dilution rate and can go off of that.   If I am working with a new formulation, I typically start with a 1:1 ratio of soap paste to distilled water.  There is a sample dilution chart floating around the internet but your dilution will vary quite a bit it so it best to find a starting point and adjust from there adding water as necessary to fully dilute the soap paste.  Take good notes here by recording your starting dilution ratio and any water additions.  Measure out how much the paste you want dilute and place it in your crock pot turning it on high.  Keep the lid on while diluting.  For a new recipe, I usually start with 10 - 16 ounces of paste.  Measure out the same amount of water plus one ounce and bring it to a boil (the extra ounce is to account for some evaporation when boiled.)   Measure out the required amount of boiling water again and slowly add it to the crock pot of warming soap paste.  Break up the paste chunks as best you can with a utensil.  Keep the crock pot on high to help speed the dilution process.


Step 14:  After an hour or so, you can see how well the paste is diluting.  The amount of water needed to fully dilute the paste is determined by the oils used.  The higher the amount of soft oils in the formulation, the greater amount of water necessary to fully dilute.  My 100% olive oil formulations are diluted at a 1:4 ratio of paste to distilled water.  The higher the amount of hard oils, the less amount of water needed to dilute the paste.  When adding more water to continue to dilute the paste, do so in small increments.  Since this dilution started at ata 16:16, I am going to add 4 more ounces of boiling water since I still have large chunks of paste floating around.  In taking good notes, my ratio is now recorded at 16:20.   Make sure to give the paste time to dilute before deciding to add more water.  This can be a lengthy process where patience required.  It is much easier to add more water than to try to remove it.  Continue this process until the paste is fully diluted and there is not soap skin on the surface.  The image below shows my dilution at 16:20.  It is not a great pic, but there are still a few chunks of soap and also a soap skin at the surface.  More water (2 more ounces), more note taking, more waiting.....


After another hour or so, I still have a soap skin on the surface - 2 more ounces of water (16:24) added, stir, put lid on and wait.......check again in another hour or so.   Another sign that your dilution needs more water is that the soap will stick to the sides of the crock pot.  After going through this process several times, my current ratio is 16:30.  I say that because right now my soap is still hot and the only way to know if the soap skin will not reform is for it to cool down.  I take out a small portion (about 2 - 3 ounces) into a plastic container and let it cool down to room temperature (sometimes putting it in the refrigerator to speed up the cooling down.)  If you see a soap skin forming, you need to add more water and test again.   The images below show the formed soap skin on my sample.  Back to the crock pot to add more water.



Step 15:  Now that the soap is fully diluted, you need to determine your finished soap weight as some of the added water will have evaporated out.  Weigh the finished soap.  This dilution ended up at a ratio of 16:30 ounces of paste to water meaning I should have a finished weight of 46 ounces of soap.  My soap weighs 40 ounces so I lost 6 ounces of water during the dilution process.  As a result, my actual dilution ratio is 16:24 or 1:1.5.  For every ounce of soap paste, I need 1.5 ounces of water to fully dilute it.  For future dilutions and for consistency purposes, this will be my starting point when diluting the rest of this batch or making another batch with the same formulation.  While I might still need to add more water for a future dilution starting at this ratio due to evaporation,  my goal is always to end up with the same amount of finished soap per pound of soap paste after dilution.  For every 16 ounces of soap paste, I expect to have 40 ounces of finished soap each time.

Step 16:  Check the Ph of the finished soap.  This is where your digital ph meter will come in handy.  I take my room temperature sample and use the Ph meter to test it.  Right now, this soap tests at 9.3 which is great for liquid soap.  I could take it down further by adding small amounts of a 20% citric acid solution (that is my neutralizer of choice).  You have to be careful in bringing down the Ph using citric acid because it you take it to low, (below 8.5 even 9.0 or so) your soap will separate back into oils and lye and you will no longer have soap.  Pure soap, whether in liquid or bar form, is an alkaline product and will never have a neutral to low or acidic ph value - otherwise it is not soap.  I do not mess the with the soap ph unless it is over 9.7.  Many of the additives you add to your soap will also lower the ph and you will have difficulty troubleshooting any separation problems if they come up.  Many of the current formulations out there allow for a slight superfat (1 - 3%) which will still create a clear soap and not need any neutralization at all.  People have more problems with their soap due to the immediate use of citric acid or borax when the soap if first diluted.  Soap gets cloudy or separates out due to unnecessary use of citric acid or borax. 

Step 17: Adding your finishing ingredients.  Once your soap is full diluted, time to determine which, if any, additives you would like to incorporate.  These can be fragrance oils, essential oils, glycerin, thickeners, etc.

Thickening with Sodium Chloride (regular table salt):  For 100% olive oil (Castile) soap you can use a 20% salt solution.  Soaps with any decent amount of coconut oil will not thicken with a salt solution.  To thicken with a salt solution,  boil 4 ounces of distilled water and add 1 ounce of regular table salt (not iodized).  Mix and let the salt dissolve.  Heat your soap up to 140 - 150 degrees F and add small amounts of the salt solution testing the thickness after each one and recording how much solution you are adding per pound of finished soap.  While the soap may immediately thicken upon adding the solution, you will not know how thick it will end up until it comes back to room temperature.  You can add the salt solution to room temperature liquid soap, but I have had undissolved salt particles end up in my soap that way.  Take notes on how much solution you need to get the thickness you want.  If your soap ends up too thick, you can always add additional water but then you are further diluting your soap.  Better to go slow and take good notes.

Thickening with Hydroxyethyl Cellulose (HEC) - This is the thickener that I have decided to go with for all other soaps, shampoos and body washes that are not 100% soft oils.  Cellulose is a naturally occurring compound found in the cell walls of plants.  HEC is water soluble and used at 1 - 3% depending on how thick you want your end product.  I use it at 1% for shampoos and 1.2% for body washes.  It is in powder form and is diluted in room temperature distilled water or glycerin.  A good ratio for HEC to water/glycerin is 1:4.  Add the liquid to the HEC and mix well until the HEC is dissolved into the liquid.  If you let it sit too long, it will start to gel on you.  If using distilled water, boil it first and let it come back to room temperature.  They key to using HEC to thicken diluted soap is that both the soap and the HEC solution must be at room temperature.  If either one is heated, the HEC solution will gel up on you and be very difficult to incorporate into your soap (you will have to stick blend it in and will end up with a foamy mess that takes days to settle down).  

HEC can also be added during the dilution phase once you formulation and dilution rate is established so that you get consistent thickening every time.  If adding it during dilution, boil your distilled dilution water and allow to come back down to room temperature then add your HEC/water or HEC/glycerin to your dilution water and mix well with a whisk.   Continue mixing until the solution is fully dispersed into the dilution water then add to you paste.  I use a crock pot to dilute and keep it on low or warm while the soap is diluting.  It will thicken while it dilutes.  If your soap ends up too thick, add an ounce or two if boiled distilled water to thin it out a bit - and again, take notes!

Glycerin: 1 - 2 ounces per finished pound of soap.  I have read that adding glycerin can bring extra emoliency to your finished soap.   Not sure if this is true, but it cannot hurt your soap.  I have also ready that added glycerin can help clear a slightly cloudy soap - again, not sure if this is true.  Lastly, I have also read the glycerin can thicken soap but I have not noticed this in any my soaps.

Fragrance or Essential Oils:  These are typically added at 1% - 3%.  Since these are oils are not water soluble, add them to hot soap (around 140 - 160 degrees) so that they fully incorporate into the soap.    There are also solubizers out there that will also help to better disperse fragrance or essential oils into your soap.   I cannot stress enough to test any fragrance oil or essential oil on a small sample of finished soaps because they can affect the finished product.  Some will thicken it, some thin it and some will make it cloudy.  Some will even cause separation of your soap.  When testing, add the oil to the sample of hot soap, mix then let it sit.  It may look cloudy at first, but should clear up within a few minutes.  If it does not, or your soap separates, you might want to try a different fragrance or essential oil.  Again, take notes on what additives do what to your soap.

You can also store your finished soap in a container, then add any of these ingredients at another time.

Step 18: Pour your finished soap into a good container with a secure lid to sit for a week or so.  This is called sequestering.  Some people do it, some don't, some say the soap becomes milder, some say no...... the list goes on and on.  Take notes and do what works for you.   I like to let me soap sit for a week before I bottle it to make sure that no particles settle to the bottom.   When ready, package into bottles, cap, label and use.  Below is my finished soap from this process. 






~ Faith, Alaiyna B. Bath and Body

Resources:
Bramble Berry - Base Oils, Fragrance and Essential Oils, Potassium Hydroxide, Lye Calculator and a whole ton of great information on their blog.  You can also start with one of their pre-made soap pastes to get a feel for dilution before jumping into the whole process.
The Lye Guy - Potassium Hydroxide
Columbus Foods/Soaper's Choice - Base Oils
Wholesale Supplies Plus - Packaging
Elements Bath and Body - Fragrance Oils
The Science CompanyPhenolphthalein
The Herbarie - Hydroxyethyl Cellulose


Copyright 2006 - 2014 Alaiyna B. Designs.  All rights reserved.  All text and images are the property of Alaiyna B. Designs.  No part of this document or webpage may be reproduced by any means without prior written consent of Alaiyna B. Designs.

23 comments:

  1. I'm fortunate I did simply because now Ive received a entire new view of this.
    bath shops

    ReplyDelete
  2. Do you always need to use a thickening agent like glycerin or boric acid? I tested my paste in distilled water and it came out perfect. I;m just wondering where to go from here. There are bubbles in my dilution, but it's not thick like shampoo or body wash. I greatly appreciate your help.

    Leah

    ReplyDelete
    Replies
    1. Hi Leah - I do not use boric acid at all. I use citric acid when I need to adjust the ph and HEC (hydroxyethyl cellulose) or table salt to thicken. I add glycerin to the finished soap not for thickening but for the added emoliency at about 1 - 1.5 ounces per diluted pound of soap. At that rate, I have never had glycerin thicken my soaps. Bubbles at the surface are normal as it is soap and they will settle out as the soap sits. Have you fully diluted your paste yet?

      Delete
  3. No I haven't fully diluted it yet. It's still in my Crockpot. I'm getting ready to dilute it, but I'm a little nervous about making a mistake. I don't have a way to test the PH other than PH testing strips as this is my first round at making products using any kind of chemical like Potassium Hydroxide. Is the finished product really runny like water?

    ReplyDelete
    Replies
    1. Once it is fully diluted, it will most likely be thin - every recipe that I have created is on the thin side (not at all like a gel). What I would suggest is to not dilute it all at once. Remove your paste and store in a container and start with about 10 ounces to dilute. That way you can easily determine your dilution ratio without using up all your paste. Your recipe will determine how much boiling distilled water will be needed to fully dilute it. I usually start at 1:1 so 10 ounces soap paste and 1o ounces boiled distilled water, then add more water and take notes as to how much water it took to fully dilute your 10 ounces of paste. That way when you go to dilute the rest of it or make another batch, you know how much water you will need.

      As for the PH, the test strips won't do you much good. They will give you a range - just make sure you are comfortable that it is below 10. A digital Ph meter that can easily be calibrated is definitely the way to go.

      Delete
  4. Thank you so much for all your help! I have a book that teaches you all about making liquid soap but it's very confusing. I found your blog and it was extremely helpful!

    ReplyDelete
  5. Hi,
    I want to ask you something. Using this method I can make shampoos. All I need is to used oils that I want and the final result is a shampoo or I need to add something different towords liquid soap?
    Thank you.

    ReplyDelete
    Replies
    1. Hi Daniela - it really depends on what you want in a shampoo. A basic cleansing shampoo would just be using the oils you choose and creating the liquid soap. There are lots of additives you can then add to your shampoo that make them more than just a liquid soap you use as shampoo. Some great additives for shampoo are panthenol, proteins (silk, wheat, oat, soy) and conditioning agents like polyquats - all make great additives for shampoo. The process for liquid soap and shampoo is the same - it is your ingredients that will make it one or the other based on your preferences and how you want to use it.

      Delete
  6. This comment has been removed by the author.

    ReplyDelete
  7. Hi, I love your blog and recipes. I want to make liquid soap and looking recipes. You explained very detailed, awesome :) I want to ask, when I calculate your recipe online lye calculator, your lye is very high, for %0 fat 3,29 ounces KOH. Do I miss something?

    ReplyDelete
    Replies
    1. Hi there and thanks for the comments. When you use an online calculator, make sure that you select liquid soap and not bar soap. You need a bit more KOH (Potassium Hydroxide) to saponify oils for liquid soap than NaOH (Sodium Hydroxide) for creating bard soap. If you run the numbers through both SummerBee Meadow and Brambleberry's calculators at a 0% superfat, you will get those same numbers for KOH and liquid.

      Delete
    2. Hi,

      Yesterday I made a batch of LS and it is jelly when is hot but when is cold it looks like a solid soap.
      I need to coock it more or is because of KOH? My lye is 91.1% but in soapcalc I choose only KOH. Now I recalculate the formula and when I choose KOH 90% the quantity of lye is a little bit more.

      Delete
    3. Hi Daniela - it is quite normal or your soap paste to be a different consistency when hot than when room temperature. I do not use soapcalc to calculate my lye amounts so I am not familiar with that calculator and the results it is returning to you. Have you tested for excess lye using Phenolphthalein drops? How long have you cooked it already?

      Delete
  8. hi. thank you for the info on hec. making clear baby shampoo for my coschem project. At first I added my surfactant blend and water phase to warm hec and it looked like a slurry :( I read your post...I then added my ingredients to room temperature hec gel and it seem to work better. There is no oil phase so it should be stable... I am using Lotioncrafter hec. It doesnt clump cos its R grade..

    ReplyDelete
    Replies
    1. Hi Sarika - I am not familiar with surfactant blends for liquid soaps as I do not use them and therefore am not familiar with the process of incorporating HEC as a thickening agent into this type of soap product. I am only familiar with thickening soap that is created from the saponification of oils from scratch.

      Delete
  9. With interest I have read the information in this tutorial and your comment that lowering the ph value of KOH soap below 8 does not make sense because you wont have soap anymore.
    The natural ph of the skin is about 5.5. I have read a survey on commercial shampoos in which most manufacturers claim 'ph neutral qualities'. Most shampoos are reported with a ph between about 4.5 and 6.5. Could you tell me how they achieve that low ph without loosing the soap effect of the shampoo?
    I am making KOH liquid soap since long. Can it be made 'ph neutral' (either 5.5 or 7)
    Thanks for your reply
    Bernd

    ReplyDelete
    Replies
    1. Hi Mahant - Those "ph balanced" cleansing products are not true "soap" which is created from the saponiification of oils and an alkali (sodium hydroxide or potassium hydroxide). Anything that is ph balanced is a detergent based cleanser. Keep in mind that PH is not an indicator of how gentle or effective a cleanser is. You can have a "ph balanced" cleanser that is very harsh on the skin and hair stripping away the natural oils your skin and hair need and you can have a higher Ph "Soap" that is very gentle in that it does not strip away the natural oils. Because commercial products are not alkaline (ph > 7), they need chemical detergents to be an effective cleanser. This is also why you will never see the word "Soap" on a detergent based product. You will see terms like "cleanser", "beauty bar", moisturizing bar" but NOT "soap" as by law they cannot be labeled as such.

      Delete
    2. So - no, you will never have a "true soap" product with a ph of 5.5 or 7.

      Delete
  10. Hi Faith. thanks for all these great information. i tried doing my first batch of liquid soap with mostly olive oil but it kind of took forever to turn clear in water. my question is, do you have any idea if wethter we can use any other liquid other that water; something like coconut milk or chamomile herbal tea to make the soap. i', thinking of doing the same process as that for the goat milk soap. if we cant use it in the first phase, do you think we can use it in diluting the gel soap and how to make it have a longer shelf life. thanks

    ReplyDelete
    Replies
    1. HI "Going Messy" - Olive Oil Soaps can take a very long time to trace and cook so that does not surprise me. Yes, you can use other liquids to create your soap paste. Many people use flat beer or teas. I tried coconut water but was not happy with the results as I don't think the nutrients carried over into the soap. I use goat's milk and coconut milk in two of mine, but you have to account for the extra fats in milk products when calculating your KOH.

      You do not want to use these in place of or as part of your dilution water as they will cause your soap to go bad. In order to speed up the time it takes for your soap to trace, you can use the glycerin method or the 50/50 method (or a variation of this ratio) for your next batch. I have tutorials for both of those too and they really help with high olive oil content soaps.

      Delete
    2. Hello Faith. I do appreciate your prompt reply. i was thinking of reserving all the good properites in the milk so using it in the diluting phase. maybe using some kind of preservative to stop it getting bad. what do you think? what if i want to add honey in the final stage. what preservative would you recommend?

      Delete
    3. The problem with using coconut milk as your dilution liquid is the fat - and there is a lot of it in coconut milk. It is not water soluble and the fat will just rise to the top of your soap creating a nice thick layer. Dilution liquid has to be water soluble. Just because something is liquid, does not mean it is water soluble.

      In regards to preservatives, this is a bit controversial when it comes to liquid soap. Some people say the ph is high enough to inhibit nasties from growing, others will say that some nasties will grow in any environment. BUT, there are very few preservatives that will be effective in these types of liquid soaps. Most of the ones used or recommended for use have an effective ph range < 8 and that includes optiphen and liquid germall - so people who are using those preservatives really are not doing much preserving as the ph of liquid soap will be 9 - 10 on average - which is too high for those preservatives to be effective. The only preservative that will work in a high ph environment is suttocide A which is not as readily available as the others (I have found 2 sources only). So, if you are going to use a preservative, make sure you research the ones you are considering to make sure they are compatible with your product.

      Delete
  11. Thanks alot Faith. Very detailed and informative. Wish you the best!

    ReplyDelete